Who receives additional support?

Many people report that they had had a lot of problems in mathematics during their time at school. Unfortunately, school children still face the same problems today. Usually, however, many children are not diagnosed for dyscalculia or numeracy difficulties, even if they show poor learning outcomes in mathematics. Thus, a lot of them are denied access for specific educational measures that would help them. That of course causes frustration on many levels. According to criteria set by the World Health Organization only those children suffer from dyscalculia, which show an arithmetic impairment but no impairment in their general intelligence or in any other academic domain, such as reading or writing (so-called discrepancy criterion).

The use of discrepancy criterion to identify children with numeracy disabilities has been criticized in academic literature for many reasons (e.g. Gaidoschick, 2011; Hartke & Diehl, 2013; Krajewski, 2003; Lorenz, 2003; Moser Opitz 2004). Even though there is undisputable evidence for the influence of intelligence on mathematical performance (e.g. Helmke & Weinert, 1997; Jordan, Hanich & Kaplan, 2003; Krajewski & Schneider, 2006), there is still no clear answer whether children with and without intelligence impairment, or reading or spelling disabilities really have different educational needs. So the question has to be raised: Is it justified for pupils without a discrepancy to be denied from further interventions (Moder Opitz, 2004)? Research proves that the mathematical development of children with numeracy difficulties is basically the same as for their typically developing peers, although idevelopment may be delayed in time (e.g. Brown, Askew, Hodgenm Rhodes & William, 2003; Lorenz & Raddatz, 20013; Werner 2007). Gaidoschick (2011) asked the question: “Is it justified that a child, who does not only have difficulties with mathematics but also with reading, is not allowed to receive further support as opposed to a child that fulfills the discrepancy criterion?” (p. 12; quote translated by editor). There doesn’t seem to be a sensible reason why a student with poor mathematical performance and low cognitive skills should not get specific help or compensation for disadvantages – especially since they are likely to be successful. In this context, Lorenz (2003) states: “Instead it would be much more reasonable to offer additional help for each child, who shows an undesired learning progress - no matter the reason.” (p. 15; quote translated by editor). The concept of theRügen Inclusion Model follows the same approach based on the above mentioned research results and arguments brought forward.

How many children have learning disabilities in mathematics?

There is no definite answer to the question of how many cases of learning disabilities in mathematics there are and therefore need to be treated. Depending on the definition of numeracy disabilities (including or excluding the discrepancy criterion) there are different information about the frequency of appearance.

• If referred to children who show mathematical difficulties despite average intelligence and school performance (including discrepancy criterion), it is assumed internationally that approximately 1.3% (Lewis, Hitch & Walker, 1994) to 6.6% (Hein, Bzufka & Neumärker, 2000) of all children are affected. Von Aster et al. (2007) report a prevalence of four to seven per cent of numeracy disabilities in childhood for German-speaking countries based on ICD-10. However, many children are excluded from these figures even though they also have difficulties with arithmetic operations.

• When excluding the discrepancy criterion, researchers assume that seven up to 13% of children are affected (Schipper, 2003; Jacobs & Petermann, 2007).

• PISA results even show that 19 to 24% of teenagers have severe problems with mathematical domains (Klieme, Neubrand & Lüdke, 2001; OECD, 2010). The IGLU-study (Bos, Lankes, Prenzel, Schwippert, Walther & Valtin) reached similar results, proving that nearly 20% of fourth-grade students, before they transfer to secondary school, only possess the mathematical knowledge of students from second grade. Hasselhorn, Marx & Schneider (2005) assume that approximately 20% of all fourth-grade students show a learning deficit equal of two school years.

The Rügen Inclusion Model helps school children with their struggles. Based on the above mentioned research results, we assume that approximately 20% of the school children need specific help for learning arithmetic. About 5% of them have serious disabilities so that they need to be additionally supported with special educational measures. In order to help every child according to its needs, RIM provides different prevention levels (tiers) for an individual support.

Why do so many students have problems in mathematics?

Respective longitudinal studies illustrate the steadiness of the development of mathematical performance (Aunola, Leskinen, Lerkkanen & Nurmi, 2004; Fritz et al., 2007; Krajewski, 2003; Krajewski & Schneider, 2006; Peard, 2004; Weißhaupt, Peucker & Wirtz, 2006). Consequently, children who already have problems with calculating at the beginning of school will have increasing difficulties in mathematics lessons during their time at elementary school (Aunola et al., 2004; Becker, Lüdtke, Trautwein & Baumert, 2006; Gaupp, Zoelch & Schumann-Hengsteler, 2004). In academic literature this phenomenon is called “scissors-effect” (Becker et al., 2006). The reason can be found in the cumulative structure of arithmetical competences: in the course of learning arithmetic, consecutive steps of development have to be accomplished in a systematical order which will lead to essential mathematical knowledge and arithmetic concepts (Fritz, Ricken & Gerlach, 2007; Krajewski & Schneider, 2006). In other words: when important steps are skipped by a student, the following ones will not be accomplish either, or at least any further development is being slowed down which leads to an increasing learning gap. From the beginning of their education, the school has to provide specific educational offers in order to help students improve their mathematical skills. It is quite doubtful that school problems will cease on their own without any external help and we strongly advise to distance oneself from such a delusive hope.


Aster, M. von, Schweiter, M. & Weinhold Zulauf, M. (2007). Rechenstörungen bei Kindern. Vorläufer, Prävalenz und psychische Symptome. Zeitschrift für Pädagogische Psychologie, 39, p. 85-96.

Aunola, K., Leskinen, E., Lerkkanen, M.-K. & Nurmi, J.-E. (2004). Developmental Dynamics of Math Performance from Preschool to Grade 2. Journal of Educational Psychology, 96 (4), p. 699-713.

Becker, M., Lüdtke, O., Trautwein, U. & Baumert, J. (2006). Leistungszuwachs in Mathematik. Evidenz für einen Schereneffekt im mehrgliedrigen Schulsystem? Zeitschrift für Pädagogische Psychologie, 20, p. 233-242.

Bos, W., Lankes, E.M., Prenzel, M., Schwippert, K., Walther, G. & Valtin, R. (Eds). (2003). Erste Ergebnisse aus IGLU. Schülerleistungen am Ende der vierten Jahrgangsstufe im internationalen Vergleich. Münster: Waxmann.

Brown, M., Askew, M., Hodgen, J., Rhodes, V. & William, D. (2003). Individual and cohort progression in learning numeracy ages 5-11: results from the Leverhulme 5-year-longitudinal study. In F. Lin & J. Guo (Eds.), Proceedings of the International Conference on Science and Mathematics Learning (p. 81-109). Taipei: National Taiwan Normal University.

Fritz, A., Ricken, G. & Gerlach, M. (2007). Kalkulie. Handreichung zur Durchführung einer Diagnose. Berlin: Cornelsen.

Gaidoschick, M. (2011). Rechenschwäche – Dyskalkulie. Eine unterrichtspraktische Einführung für LehrerInnen und Eltern (6th Ed.). Hamburg: Persen.

Gaupp, N., Zoelch, C. & Schumann-Hengsteler, R. (2004). Defizite numerischer Basiskompetenzen bei rechenschwachen Kindern der 3. und 4. Klassenstufe. Zeitschrift für Pädagogische Psychologie, 18 (1), p. 31-42.

Hartke, B. & Diehl, K. (2013). Schulische Prävention im Bereich Lernen. Problemlösungen mit dem RTI-Ansatz. Stuttgart: Kohlhammer.

Hasselhorn, M., Marx, H. & Schneider, W. (2005). Diagnostik von Mathematikleistungen. Jahrbuch der pädagogisch-psychologischen Diagnostik (Tests und Trends N. F., Bd. 4.). Göttingen: Hogrefe.

Hein, J., Bzufka, M. & Neumärker, K.-J. (2000). The specific disorder of arithmetical skills. Prevalence studies in a rural and an urban population sample and their clinico-neuropsychological validation. European Child & Adolescent Psychiatry, 33, p. 187-101.

Helmke, A. & Weinert, F.E. (1997). Bedingungsfaktoren schulischer Leistungen. In F.E. Weinert (Hrsg.), Psychologie des Unterrichts und der Schule (Enzyklopädie der Psychologie, Themenbereich D, Series 1, Vol. 3, p. 71-176). Göttingen: Hogrefe.

Jacobs, C. & Petermann, F. (2007). Rechenstörungen. Göttingen: Hogrefe Verlag.

Jordan, N., Hanich, L. & Kaplan, D. (2003). Arithmetic fact mastery in young children: A longitudinal investigation. Journal Experimental Child Psychology, 85, p. 103-119.

Klieme, E., Neubrand, M. & Lüdke, O. (2001). Mathematische Grundbildung: Textkonzeption und Ergebnisse. In J. Baumert, E. Klieme, M. Neubrand, M. Prenzel, U. Schiefele, W. Schneider et al., (Eds.), PISA 2000: Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich (p. 141-191). Opladen: Leske + Budrich.

Krajewski, K. & Schneider, W. (2006). Mathematische Vorläuferfertigkeiten im Vorschulalter und ihre Vorhersagekraft für die Mathematikleistungen bis zum Ende der Grundschulzeit.Psychologie in Erziehung und Unterricht, 53, p. 246-262.

Krajewski, K. (2003). Vorhersage von Rechenschwäche in der Grundschule. Hamburg: Kovac.

Lewis, C., Hitch, G.J. & Walker, P. (1994). The Prevalence of Specific Arithmetic Difficulties and Specific Reading Difficulties in 9- to 10-year-old Boys and Girls. J Child Psychol & Psychiat, 35 (2), p. 283-292.

Lorenz, J.H. & Raddatz, H. (2003). Handbuch des Förderns im Mathematikunterricht. Hannover: Schroedel.

Lorenz, J.H. (2003). Lernschwache Rechner fördern. Berlin: Cornelsen.

Moser Opitz, E. (2004). Dyskalkulie: Krankheit, Erfindung, Mythos, Etikett … ? Auseinander-setzung mit einem geläufigen, aber ungeklärten Begriff. Vierteljahreszeitschrift für Heil-pädagogik und ihre Nachbargebiete, 72, p. 179–190.

OECD (2010). PISA 2009 Ergebnisse: Was Schülerinnen und Schüler wissen und können. Schülerleistungen in Lesekompetenz, Mathematik und Naturwissenschaften (Vol. 1). München: Bertelsmann.

Peard, R. (2004). School Mathematical Achievement as a Predictor of Success in a First Year University Mathematics Foundation Unit. In I. Putt (Eds.), Mathematics Education Research Group of Australasia 27th Conference Proceedings (p. 422-429). Townsville: Mathematics Education Research Group of Australasia.

Schipper, W. (2003). Kompetenzentwicklung beim schriftlichen Rechnen. In A. Fritz, G. Ricken & S. Schmidt (Eds.), Rechenschwäche. Lernwege, Schwierigkeiten und Hilfen bei Dyskalkulie (p. 98-115). Weinheim: Beltz.

Weißhaupt, S., Peucker, S. & Wirtz, M. (2006). Diagnose mathematischen Vorwissens im Vorschulalter und Vorhersage von Rechenleistungen und Rechenschwierigkeiten in der Grundschule. Psychologie in Erziehung und Unterricht, 53, p. 236-245.

Werner, B. (2007). Diagnose und Förderung im Bereich der Zahlbegriffsentwicklung. In J. Walter & F.B. Wember (Eds.), Sonderpädagogik des Lernens. Handbuch Sonderpädagogik (Vol. 2, p. 571-590). Göttingen: Hogrefe.